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An initial isodensity level is chosen using the cumulative 
distribution function for gray values within the VOI. 
Specifically, we select the value that most closely 
corresponds to that enclosing 60% of the darkest voxels 
within the isodensity surface. This initial surface provides 
what is usually a structurally reasonable starting point for 
the optimization. 

A spatial-gradient quality metric, M, is then calculated 
for the surface. At each vertex on the surface, the local 
vector spatial gradient,  

v 
∇ G , is calculated by convolving the 

gray-scale data in the vicinity of the vertex with 3×3×3 
Cartesian finite difference kernels dx, y, z, (For example, dx 
consists of nine repeated rows of the vector [0.5, -1, 0.5].) 
Next, the outward surface-normal vector,    , is calculated at 
each vertex, and we form the scalar product of this vector 
with the spatial gradient to obtain the outward-normal 
component of the spatial gradient. Finally, we calculate the 
area of the surface trapezoid associated with each vector, 
and form the area-weighted sum of the normal spatial 
gradient, a numerical approximation of: 
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  M = dA � n •
v 
∇ G( )∫ . (1) 

The isodensity value of the surface is now varied in an 
optimization process that seeks to maximize M. We use a 
standard optimization routine that is implemented in the 
software product IDL (Research Systems Inc, Boulder, CO, 
USA), using a downhill-simplex method [11]. 

To provide an objective standard to assess the 
performance of the optimization method, we created a 
simulated volume containing realistic representations of 
synaptic vesicles. We chose an isotropic voxel size of 1 nm, 
a reasonable value for actual reconstructed EM tomography 
volumes. Vesicles were simulated by summing a few low-
order spherical harmonics to create a spheroidal shape with 
roughly 50-nm diameter. To assess the ability of our surface 
models to delineate fine-scale structure, surface texture was 
created by adding additional low-amplitude, high-order 
spherical harmonics. Superposing two such spheroids with 
radii offset by 5 nm simulated the trilaminar character of 
stained membranes. The entire simulated volume was 
smoothed slightly (3×3×3 boxcar kernel, repeated twice) to 
reduce quantization artifacts, and normally distributed noise 
was added to simulate a typical signal-to-noise ratio of five. 
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Surface models were also obtained from actual data from 
the frog neuromuscular junction. Our preparations were 
conventional [12, 13]. Briefly, cutaneous pectoris muscles 
of adult Rana pipiens (5 cm nose rump length) were, in 
sequence, fixed with 1% phosphate buffered glutaraldehyde, 
refixed and stained with 1% osmium tetroxide in phosphate 
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buffer, stained with saturated aqueous uranyl acetate, 
dehydrated in ethanol and propylene oxide and embedded in 
Epon 812. Thin sections having a silver interference color 
(~50 nm thick) were mounted on 1×2 mm single slot 
Formvar coated grids, and stained with uranyl acetate 
followed by lead citrate. For use in the alignment of tilt 
images, mounted sections were floated on a drop of ~ 0.01% 
unconjugated gold colloid in H2O (Sigma Chemical Co, St 
Louis, MO) for 1�2 min and air-dried. 

The data set was made at room temperature on a FEI 
Tecnai T20 electron microscope operated at 200KV. It was 
equipped with LaB6 electron source, a cryoholder and a 
1024×1024 CCD. The tilt series consisted of 201 images 
spanning angles from -75° to +75° in 0.75° increments. The 
images were made at a microscope magnification of 
29,000×, yielding a pixel size of 0.59 nm in the image. 

The gold beads on the section served as fiducial markers 
for aligning the tilt images. We used an alignment scheme 
previously developed in our laboratory [12] that provided an 
accuracy of 2.1 pixels (1.2 nm) RMS. Volume 
reconstructions were produced by weighted backprojection, 
and this volume was then downsampled 2× to reduce 
computational load. 

Vesicles were segmented from the reconstructed volume 
using a semi-automatic method applied to a series of 2D 
slices. Segmentation was initiated by having an operator 
mark an anchor path on a single volume slice. This path was 
then automatically propagated perpendicular to the slice 
plane. The segmentation VOIs were somewhat larger than 
the stained structures that they enclosed to allow accurate 
and complete isodensity-surface calculations [5]. 
 

 

III.  RESULTS 
 
A.  Simulated synaptic vesicle 

 

Surface models were generated and optimized for a 
simulated volume containing several vesicles and some 
simple cylindrical structures that simulate active-zone 
material. Here, we present the results of optimizing the 
isodensity surface model for one of the vesicles. 
 The default choice of isodensity level is not optimal. 
The blue �x� in Fig. 1 indicates the M value of the initial 
choice. The optimization routine sampled the isodensity 
levels shown by the set of orange asterisk symbols. For 
reference, these points are overlaid on curve formed by 
calculating M on a closely sampled grid of isodensity levels. 

The optimal isodensity level produces a surface model of 
the vesicle structure that precisely follows the detailed 
outline of the contrast boundaries. When the isodensity level 
is too low, the surface model disintegrates into multiple 
surfaces surrounding many small subvolumes (Figs. 2a, b). 
When the isodensity level is too high, the surface model 
only delineates the outer boundaries of the vesicle 
membrane, showing less detail on the outer surface and 
missing the trilaminar character of the membrane (Figs. 2c, 

d). At the optimal value, both the outer and inner leaflets of 
the trilaminar membrane are delineated by the surface model 
(Figs. 2e, f). 

  

 
 

Fig. 1. Variation of spatial gradient metric with isodensity 
level for simulated data. Optimization started at the blue �x,� 
and sampled all the points marked by the red �*� symbols. 

 

 

10 nm 

 

Figure 2. Example isosurface models of a synthetic synaptic 
vesicle. Left column shows 3D rendering; right column 

shows cross-section of the model (blue lines) overlaid on the 
grayscale data. (a, b) isodensity level too dark. (c, d) 

isodensity level too light. (e, f) optimal isodensity level 
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B.  Actual synaptic vesicle 
 
 

 
 

Figure 3. Variation of spatial gradient metric with isodensity 
level for biological data. (Symbols as in Fig. 1.) 

 

 
 

Figure 4. Example isosurface models of an actual synaptic 
vesicle. (a, b) isodensity level too dark. (c, d) isodensity 

level too light. (e, f) optimal isodensity level 
 

 Application of the optimization scheme to a synaptic 
vesicle obtained from a frog neuromuscular junction 
revealed similar behavior of the algorithm. The spatial-
gradient metric shows a well-defined maximum, and the 

maximization algorithm samples it in a fashion similar to 
that of the simulated vesicle (Fig. 3). 

The surface models also show a similar variation with 
isodensity level around the optimum. At levels that are too 
low, the model again disintegrates, but the greater structural 
complexity of the actual vesicle gives rise to a more 
complex collection of surfaces (Figs. 4a, b). At levels that 
are too high, the model surface does not follow the detailed 
spatial variations of the vesicle membrane (Figs. 4c, d). The 
optimal level appears to follow the contrast boundaries with 
greatest accuracy. In fact, the optimal model reveals a 
complex surface topography of the vesicle membrane that 
may result from transmembrane macromolecules that are 
associated with the outer and inner surfaces of the synaptic 
vesicle membrane [14]. 
 
 

IV.  DISCUSSION 
 

We used a particular quality metric for the isodensity 
surface, the area-weighted sum of the normal spatial 
gradient, because it had a smooth, well-behaved variation 
with isodensity level. We experimented with several other 
metrics, including the summed normal spatial gradient, 
average normal spatial gradient, and the mean-squared 
normal gradient. The first two methods were rejected 
because they behaved poorly as isodensity level was varied, 
exhibiting large jumps and fluctuations. The mean square 
gradient was rejected because it tended to give a lesser 
quality visual match between the isodensity surface and the 
contrast boundary. Adding the areal weighting improved the 
numerical behavior of the method by de-emphasizing small 
regions of particularly large or small spatial gradients in the 
vicinity of a surface model. The areal weighting forces the 
fitting procedure toward larger-area surface models, 
avoiding the tendency of other optimization metrics to 
collapse upon small regions of large spatial gradients. 

10 nm 

 The surface produced at the optimal isodensity level 
accurately follows the contrast boundary at the edge of a 
stained structural component. In simulated data, the optimal 
surface delineated the two leaflets of a trilaminar membrane. 
In actual data, the optimal surface delineated a more 
complex topography they should be of biological interest. In 
general, our optimization procedure provides an isodensity 
surface model that maximizes accuracy and reliability, 
providing topographic data at the full resolution of the 
reconstructed volume. 
 It should be emphasized, however, that there is no one 
ideal choice of isodensity surface model for this volumetric 
data. For example, if one wanted to generate a surface 
encompassing the full thickness of a trilaminar membrane, it 
would be appropriate to use a larger (lighter) isodensity 
level than would be obtained by the optimization described 
here. Nevertheless, the optimization process is particularly 
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attractive because it provides an objective starting point for 
the generation of surface models. Modified isodensity levels 
necessary for specialized applications, such as example 
described above, can be obtained by modifying the optimal 
isodensity level in a standardized fashion, for example by 
applying a fixed multiplicative offset. 
 
 

V.  CONCLUSION 
 

We have presented a procedure to determine the isodensity 
level for a surface model fit to volume-of-interest data 
obtained by electron microscope tomography. The method 
automatically determines an isodensity level that puts the 
surface model at the contrast boundary between a darker 
object and its lighter background. This isodensity level is 
obtained by maximizing the area-weighted moment of the 
normal component of grayscale spatial gradient. The 
optimization process greatly improves the objectivity, 
accuracy, and convenience of surface model generation. 
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